高中数学教学工作计划范文集合六篇
时间过得真快,总在不经意间流逝,很快就要开展新的工作了,让我们对今后的工作做个计划吧。可是到底什么样的计划才是适合自己的呢?以下是小编为大家整理的高中数学教学工作计划6篇,希望对大家有所帮助。
高中数学教学工作计划 篇1本学期继续担任2---7班和2---8班的数学教学工作,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
要立足我校学生实际,在思想上增强学生学习数学的积极性,在知识上侧重双基训练,加强对学生创新思维、知识迁移、归纳拓展、综合运用等能力的培养,全面提高学生的数学素养。全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是重要工作,提高学生的解题能力是重要目标。
二、学生基本情况分析
2---7班和2---8班学生的数学学习情况一般,学生自觉性不高,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。让学生尽量回归课本,多让学生做题。还有几个月就要水平考试,经过分析还是要注重学生的基础,不要让学生在基础题上失分。教学中要从我校高二理两班学生的认识水平和实际能力出发,及时纠正不合理学习方法,注重培养学生良好的数学思维方法,良好的学习态度和学习习惯,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
三、教材分析
选修2-2共分三章,第一章导数及其应用,第二章推理与证明,第三章空间向量与立体几何。共36个课时。
第一章,通过对大量实例的分析,经历由平均变化率到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想内涵。能利用基本初等函数的导数公式和导数运算法则求简单函数的导数。理解复合函数的定义,掌握复合函数的求导公式。了解函数的单调性与导数的关系。能利用导数研究函数的单调性会求不超过三次的多项式函数的单调区间体会定积分中以曲代直、以不变代变及无限逼近的思想,初步了解定积分的概念和简单性质。掌握定积分的几何意义。
第二章:了解合情推理的含义、结构和基本类型。能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的一般模式,并能运用它们进行一些简单的推理。通过具体实例了解合情推理的演绎推理之间的联系和差异。了解直接证明的两种基本方法:综合法和分析法,并了解它们的思考过程与特点。了解间接证明的一种基本方法------反证法,并了解它的思考过程与特点。了解数学归纳法的原理。能利用数学归纳法证明一些简单的数学命题。
第三章:了解引进复数的必要性。了解数系扩充的方法。理解复数的基本概念。掌握复数的代数形式及其相关概念。掌握复数的分类。掌握复数的几何意义,了解复数集与平面直角坐标系中的点集、复数集与平面向量的对应关系;理解复平面的概念。掌握复数代数形式的加减运算法则,并能熟练地进行计算。了解两个复数相等的概念,并能利用它处理相关的问题。了解复数加减运算的几何意义,并能进行基本的计算。掌握复数代数形式的乘除运算法则,并能熟练地进行计算。了解共轭复数的概念。
2-3第一章计数原理是数学的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本章中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。
第二章随机变量及其分布通过具体实例,帮助学生理解取有限值得了离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机变量现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。
第三章在《数学3(必修)》概率统计内容的基础上,通过典型案例进一步介绍回归分析的基本思想、方法以及初步应用;通过典型案例介绍独立性检验的基本思想、方法以及初步应用,使学生认识统计方法在决策中的作用。
4--4第一章坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
第二章参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。
四.教学措施:
(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(2)集中精力打好基础,分项突破难点.所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,抓好尖子生与后进生的辅导工作。
(5)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
五.其他活动:
(1)教研:积极参加学校教研组的活动,参加集体备课,听评课活动,坚持导学案教学,抓好高效课堂。
(2)批改:坚持天天批改,认真做好记录,认真做好考试的批改与分析,让批改成为有效的教学手段。规范学生的作业本,规范作业书写。
(3)培优补差:优等生:姜安鑫。学困生;王欣。课外辅导,利用课余时间,组织学生加以辅导训练。对差生实施多做多练措施。优生适当增加题目难度。采用激励机制,对差生的每一点进步都给予肯定,并鼓励其继续进取,在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。对优生要多给予思想上的帮助,使之树立热爱集体、热心为大家服务的思想,鼓励他们大胆工作,并提供发挥他们想象力、创造性的机会,肯定他们的成绩,让他们把科学的学习方法传给大家,达到全体同学共同进步的目的。课堂教学时尽量把教学的步子放小,把教学内容按由易到难,由简到繁的原则分解成合理的层次,分层推进。师讲课时间控制在分钟,生做练习时多关注差生 ……此处隐藏6247个字……11日——7月11日 复习考试
高中数学教学工作计划 篇6一.学情分析
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校
是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二.教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。
2.以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维 的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3.信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。
4.关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。
5.新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三.教学任务与目的
1.了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大
(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2.了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=loga x互为反函数(a 0,a≠1)。通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。
3.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种
方法是求方程近似解的常用方法.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5.以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。
6.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法
刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四.教学措施和活动
1.加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功;
2.注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念;
3.了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率;
4.与学生多沟通、多交流,真正成为学生的良师益友;
5.要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
我深深地懂得:一名新世纪的人民教师、人类灵魂的工程师,肩负着重大的历史使命和对未来的历史责任感。为了不辱使命,
为了无愧自己的良心,我只能在教学这片热土上,做到更加勤恳。用自己的心血去拼、去搏展望未来,我将化晋升高一级职称为工作之动力,以“蜡炬成灰泪始干,春蚕到死丝方尽”为奉献准则,为培养新世纪英才再作贡献!
文档为doc格式